Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer ; 29(3): 562-573, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35094293

RESUMO

BACKGROUND: Triple-negative (TN) breast cancer represents a subtype of breast cancer that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER-2). Clinically, it is characterized by high invasiveness, high metastatic potential, and poor prognosis. Inhibitor of DNA binding 4 (ID4) has been shown to be overexpressed in these tumors acting as an oncogene responsible for many of its aggressive features. CDC42, a plasma membrane-associated small GTPase, can downregulate ID4 gene expression through hypermethylation of its promoter in colorectal adenocarcinomas. Since ID4 acts as an oncogene and is hypomethylated in TN breast tumors, here we asked whether CDC42 could also epigenetically silence ID4 and in doing so revert aggressive features of this tumor type. METHODS: Gene expression was retrieved from TCGA database using UCSC Xena. Association between overall survival (OS) and gene expression was assessed using Kaplan-Meier plotter. In vitro experiments involved ectopic expression of CDC42 in MDA-MB231and in MDA-MB468 breast cancer cell lines. Gene expression was analyzed by qPCR, western blot and inmunofluorescence assays and methylation by MSP, MS-MLPA, or ddMSP. RESULTS: Data mining analysis revealed that CDC42 expression varies among breast cancer subtypes that in the basal-like subtype there is an inverse correlation between CDC42 and ID4 expression and a positive correlation between CDC42 expression and ID4 methylation. In vitro experiments revealed that CDC42 overexpression induced ID4 methylation through the activation of the EZH2 pathway. ID4 silencing produced an increase in BRCA1 expression and a less aggressive phenotype in the tested cell line. CONCLUSION: We show that CDC42 silences ID4 through methylation in TN breast cancer. Given that ID4 acts as an oncogene in these tumors, we think that finding an epigenetic regulator of ID4 contributes to the research and clinical management of TN breast tumors.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/patologia , Metilação de DNA , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína cdc42 de Ligação ao GTP
2.
BMC Cancer ; 19(1): 328, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953488

RESUMO

BACKGROUND: Cancer cells evolve and constitute heterogeneous populations that fluctuate in space and time and are subjected to selection generating intratumor heterogeneity. This phenomenon is determined by the acquisition of genetic/epigenetic alterations and their selection over time which has clinical implications on drug resistance. METHODS: DNA extracted from different tumor cell populations (breast carcinomas, cancer cell lines and cellular clones) were analyzed by MS-MLPA. Methylation profiles were used to generate a heterogeneity index to quantify the magnitude of epigenetic heterogeneity in these populations. Cellular clones were obtained from single cells derived of MDA-MB 231 cancer cell lines applying serial limiting dilution method and morphology was analyzed by optical microscopy and flow cytometry. Clones characteristics were examined through cellular proliferation, migration capacity and apoptosis. Heterogeneity index was also calculated from beta values derived from methylation profiles of TCGA tumors. RESULTS: The study of methylation profiles of 23 fresh breast carcinomas revealed heterogeneous allele populations in these tumor pieces. With the purpose to measure the magnitude of epigenetic heterogeneity, we developed an heterogeneity index based on methylation information and observed that all tumors present their own heterogeneity level. Applying the index calculation in pure cancer cell populations such as cancer cell lines (MDA-MB 231, MCF-7, T47D, HeLa and K-562), we also observed epigenetic heterogeneity. In addition, we detected that clones obtained from the MDA-MB 231 cancer cell line generated their own new heterogeneity over time. Using TCGA tumors, we determined that the heterogeneity index correlated with prognostic and predictive factors like tumor size (p = 0.0088), number of affected axillary nodes (p = 0.007), estrogen receptor expression (p < 0.0001) and HER2 positivity (p = 0.0007). When we analyzed molecular subtypes we found that they presented different heterogeneity levels. Interestingly, we also observed that all mentioned tumor cell populations shared a similar Heterogeneity index (HI) mean. CONCLUSIONS: Our results show that each tumor presents a unique epigenetic heterogeneity level, which is associated with prognostic and predictive factors. We also observe that breast tumor subtypes differ in terms of epigenetic heterogeneity, which could serve as a new contribution to understand the different prognosis of these groups.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Metilação de DNA/genética , Epigênese Genética , Adulto , Apoptose/genética , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ilhas de CpG/genética , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Regiões Promotoras Genéticas/genética
3.
Clin Epigenetics ; 10(1): 111, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139383

RESUMO

BACKGROUND: Inhibitor of differentiation protein 4 (ID4) is a dominant negative regulator of the basic helix-loop-helix (bHLH) family of transcription factors. During tumorigenesis, ID4 may act as a tumor suppressor or as an oncogene in different tumor types. However, the role of ID4 in breast cancer is not clear where both an oncogenic and a tumor suppressor function have been attributed. Here, we hypothesize that ID4 behaves as both, but its role in breast differs according to the estrogen receptor (ER) status of the tumor. METHODS: ID4 expression was retrieved from TCGA database using UCSC Xena. Association between overall survival (OS) and ID4 was assessed using Kaplan-Meier plotter. Correlation between methylation and expression was analyzed using the MEXPRESS tool. In vitro experiments involved ectopic expression of ID4 in MCF-7, T47D, and MDA-MB231 breast cancer cell lines. Migration and colony formation capacity were assessed after transfection treatments. Gene expression was analyzed by ddPCR and methylation by MSP, MS-MLPA, or ddMSP. RESULTS: Data mining analysis revealed that ID4 expression is significantly lower in ER+ tumors with respect to ER- tumors or normal tissue. We also demonstrate that ID4 is significantly methylated in ER+ tumors. Kaplan-Meier analysis indicated that low ID4 expression levels were associated with poor overall survival in patients with ER+ tumors. In silico expression analysis indicated that ID4 was associated with the expression of key genes of the ER pathway only in ER+ tumors. In vitro experiments revealed that ID4 overexpression in ER+ cell lines resulted in decreased migration capacity and reduced number of colonies. ID4 overexpression induced a reduction in ER levels in ER+ cell lines, while estrogen deprivation with fulvestrant did not induce changes neither in ID4 methylation nor in ID4 expression. CONCLUSIONS: We propose that ID4 is frequently silenced by promoter methylation in ER+ breast cancers and functions as a tumor suppressor gene in these tumors, probably due to its interaction with key genes of the ER pathway. Our present study contributes to the knowledge of the role of ID4 in breast cancer.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Regulação para Baixo , Proteínas Inibidoras de Diferenciação/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Prognóstico , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Análise de Sobrevida
4.
PLoS One ; 11(7): e0157416, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27383829

RESUMO

During the last decades it has been established that breast cancer arises through the accumulation of genetic and epigenetic alterations in different cancer related genes. These alterations confer the tumor oncogenic abilities, which can be resumed as cancer hallmarks (CH). The purpose of this study was to establish the methylation profile of CpG sites located in cancer genes in breast tumors so as to infer their potential impact on 6 CH: i.e. sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, genome instability and invasion and metastasis. For 51 breast carcinomas, MS-MLPA derived-methylation profiles of 81 CpG sites were converted into 6 CH profiles. CH profiles distribution was tested by different statistical methods and correlated with clinical-pathological data. Unsupervised Hierarchical Cluster Analysis revealed that CH profiles segregate in two main groups (bootstrapping 90-100%), which correlate with breast laterality (p = 0.05). For validating these observations, gene expression data was obtained by RealTime-PCR in a different cohort of 25 tumors and converted into CH profiles. This analyses confirmed the same clustering and a tendency of association with breast laterality (p = 0.15). In silico analyses on gene expression data from TCGA Breast dataset from left and right breast tumors showed that they differed significantly when data was previously converted into CH profiles (p = 0.033). We show here for the first time, that breast carcinomas arising on different sides of the body present differential cancer traits inferred from methylation and expression profiles. Our results indicate that by converting methylation or expression profiles in terms of Cancer Hallmarks, it would allow to uncover veiled associations with clinical features. These results contribute with a new finding to the better understanding of breast tumor behavior, and can moreover serve as proof of principle for other bilateral cancers like lung, testes or kidney.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Carcinoma/genética , Carcinoma/fisiopatologia , Ilhas de CpG , Adulto , Idoso , Estudos de Coortes , Metilação de DNA , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade
5.
J Biol Chem ; 284(37): 24825-39, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19546222

RESUMO

Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2'-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.


Assuntos
Apolipoproteínas A/metabolismo , Exocitose/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Reação Acrossômica , Apolipoproteína A-V , Cálcio/metabolismo , Fertilização , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Complexo Shelterina , Espermatozoides/metabolismo
6.
J Biol Chem ; 281(13): 8656-66, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16407249

RESUMO

Epac, a guanine nucleotide exchange factor for the small GTPase Rap, binds to and is activated by the second messenger cAMP. In sperm, there are a number of signaling pathways required to achieve egg-fertilizing ability that depend upon an intracellular rise of cAMP. Most of these processes were thought to be mediated by cAMP-dependent protein kinases. Here we report a new dependence for the cAMP-induced acrosome reaction involving Epac. The acrosome reaction is a specialized type of regulated exocytosis leading to a massive fusion between the outer acrosomal and the plasma membranes of sperm cells. Ca2+ is the archetypical trigger of regulated exocytosis, and we show here that its effects on acrosomal release are fully mediated by cAMP. Ca2+ failed to trigger acrosomal exocytosis when intracellular cAMP was depleted by an exogenously added phosphodiesterase or when Epac was sequestered by specific blocking antibodies. The nondiscriminating dibutyryl-cAMP and the Epac-selective 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate analogues triggered the acrosome reaction in the effective absence of extracellular Ca2+. This indicates that cAMP, via Epac activation, has the ability to drive the whole cascade of events necessary to bring exocytosis to completion, including tethering and docking of the acrosome to the plasma membrane, priming of the fusion machinery, mobilization of intravesicular Ca2+, and ultimately, bilayer mixing and fusion. cAMP-elicited exocytosis was sensitive to anti-alpha-SNAP, anti-NSF, and anti-Rab3A antibodies, to intra-acrosomal Ca2+ chelators, and to botulinum toxins but was resistant to cAMP-dependent protein kinase blockers. These experiments thus identify Epac in human sperm and evince its indispensable role downstream of Ca2+ in exocytosis.


Assuntos
Reação Acrossômica , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Anticorpos Bloqueadores/farmacologia , Bucladesina/metabolismo , Bucladesina/farmacologia , Cálcio/farmacologia , Eletroforese em Gel de Poliacrilamida , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Immunoblotting , Medições Luminescentes , Masculino , Modelos Biológicos , Diester Fosfórico Hidrolases/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...